2 * arch/arm/mach-lpc32xx/clock.c
4 * Author: Kevin Wells <kevin.wells@nxp.com>
6 * Copyright (C) 2010 NXP Semiconductors
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
20 * LPC32xx clock management driver overview
22 * The LPC32XX contains a number of high level system clocks that can be
23 * generated from different sources. These system clocks are used to
24 * generate the CPU and bus rates and the individual peripheral clocks in
25 * the system. When Linux is started by the boot loader, the system
26 * clocks are already running. Stopping a system clock during normal
27 * Linux operation should never be attempted, as peripherals that require
28 * those clocks will quit working (ie, DRAM).
30 * The LPC32xx high level clock tree looks as follows. Clocks marked with
31 * an asterisk are always on and cannot be disabled. Clocks marked with
32 * an ampersand can only be disabled in CPU suspend mode. Clocks marked
33 * with a caret are always on if it is the selected clock for the SYSCLK
34 * source. The clock that isn't used for SYSCLK can be enabled and
47 * USB host/device PCLK& |
51 * The CPU and chip bus rates are derived from the HCLK PLL, which can
52 * generate various clock rates up to 266MHz and beyond. The internal bus
53 * rates (PCLK and HCLK) are generated from dividers based on the HCLK
54 * PLL rate. HCLK can be a ratio of 1:1, 1:2, or 1:4 or HCLK PLL rate,
55 * while PCLK can be 1:1 to 1:32 of HCLK PLL rate. Most peripherals high
56 * level clocks are based on either HCLK or PCLK, but have their own
57 * dividers as part of the IP itself. Because of this, the system clock
58 * rates should not be changed.
60 * The HCLK PLL is clocked from SYSCLK, which can be derived from the
61 * main oscillator or PLL397. PLL397 generates a rate that is 397 times
62 * the 32KHz oscillator rate. The main oscillator runs at the selected
63 * oscillator/crystal rate on the mosc_in pin of the LPC32xx. This rate
64 * is normally 13MHz, but depends on the selection of external crystals
65 * or oscillators. If USB operation is required, the main oscillator must
66 * be used in the system.
68 * Switching SYSCLK between sources during normal Linux operation is not
69 * supported. SYSCLK is preset in the bootloader. Because of the
70 * complexities of clock management during clock frequency changes,
71 * there are some limitations to the clock driver explained below:
72 * - The PLL397 and main oscillator can be enabled and disabled by the
73 * clk_enable() and clk_disable() functions unless SYSCLK is based
74 * on that clock. This allows the other oscillator that isn't driving
75 * the HCLK PLL to be used as another system clock that can be routed
77 * - The muxed SYSCLK input and HCLK_PLL rate cannot be changed with
79 * - HCLK and PCLK rates cannot be changed as part of this driver.
80 * - Most peripherals have their own dividers are part of the peripheral
81 * block. Changing SYSCLK, HCLK PLL, HCLK, or PCLK sources or rates
82 * will also impact the individual peripheral rates.
85 #include <linux/kernel.h>
86 #include <linux/list.h>
87 #include <linux/errno.h>
88 #include <linux/device.h>
89 #include <linux/delay.h>
90 #include <linux/err.h>
91 #include <linux/clk.h>
92 #include <linux/amba/bus.h>
93 #include <linux/amba/clcd.h>
95 #include <mach/hardware.h>
96 #include <asm/clkdev.h>
97 #include <mach/clkdev.h>
98 #include <mach/platform.h>
102 static int usb_pll_enable, usb_pll_valid;
104 static struct clk clk_armpll;
105 static struct clk clk_usbpll;
106 static DEFINE_MUTEX(clkm_lock);
109 * Post divider values for PLLs based on selected register value
111 static const u32 pll_postdivs[4] = {1, 2, 4, 8};
113 static unsigned long local_return_parent_rate(struct clk *clk)
116 * If a clock has a rate of 0, then it inherits it's parent
119 while (clk->rate == 0)
125 /* 32KHz clock has a fixed rate and is not stoppable */
126 static struct clk osc_32KHz = {
127 .rate = LPC32XX_CLOCK_OSC_FREQ,
128 .get_rate = local_return_parent_rate,
131 static int local_pll397_enable(struct clk *clk, int enable)
134 unsigned long timeout = jiffies + msecs_to_jiffies(10);
136 reg = __raw_readl(LPC32XX_CLKPWR_PLL397_CTRL);
139 reg |= LPC32XX_CLKPWR_SYSCTRL_PLL397_DIS;
140 __raw_writel(reg, LPC32XX_CLKPWR_PLL397_CTRL);
143 reg &= ~LPC32XX_CLKPWR_SYSCTRL_PLL397_DIS;
144 __raw_writel(reg, LPC32XX_CLKPWR_PLL397_CTRL);
146 /* Wait for PLL397 lock */
147 while (((__raw_readl(LPC32XX_CLKPWR_PLL397_CTRL) &
148 LPC32XX_CLKPWR_SYSCTRL_PLL397_STS) == 0) &&
152 if ((__raw_readl(LPC32XX_CLKPWR_PLL397_CTRL) &
153 LPC32XX_CLKPWR_SYSCTRL_PLL397_STS) == 0)
160 static int local_oscmain_enable(struct clk *clk, int enable)
163 unsigned long timeout = jiffies + msecs_to_jiffies(10);
165 reg = __raw_readl(LPC32XX_CLKPWR_MAIN_OSC_CTRL);
168 reg |= LPC32XX_CLKPWR_MOSC_DISABLE;
169 __raw_writel(reg, LPC32XX_CLKPWR_MAIN_OSC_CTRL);
171 /* Enable main oscillator */
172 reg &= ~LPC32XX_CLKPWR_MOSC_DISABLE;
173 __raw_writel(reg, LPC32XX_CLKPWR_MAIN_OSC_CTRL);
175 /* Wait for main oscillator to start */
176 while (((__raw_readl(LPC32XX_CLKPWR_MAIN_OSC_CTRL) &
177 LPC32XX_CLKPWR_MOSC_DISABLE) != 0) &&
181 if ((__raw_readl(LPC32XX_CLKPWR_MAIN_OSC_CTRL) &
182 LPC32XX_CLKPWR_MOSC_DISABLE) != 0)
189 static struct clk osc_pll397 = {
190 .parent = &osc_32KHz,
191 .enable = local_pll397_enable,
192 .rate = LPC32XX_CLOCK_OSC_FREQ * 397,
193 .get_rate = local_return_parent_rate,
196 static struct clk osc_main = {
197 .enable = local_oscmain_enable,
198 .rate = LPC32XX_MAIN_OSC_FREQ,
199 .get_rate = local_return_parent_rate,
202 static struct clk clk_sys;
205 * Convert a PLL register value to a PLL output frequency
207 u32 clk_get_pllrate_from_reg(u32 inputclk, u32 regval)
209 struct clk_pll_setup pllcfg;
211 pllcfg.cco_bypass_b15 = 0;
212 pllcfg.direct_output_b14 = 0;
213 pllcfg.fdbk_div_ctrl_b13 = 0;
214 if ((regval & LPC32XX_CLKPWR_HCLKPLL_CCO_BYPASS) != 0)
215 pllcfg.cco_bypass_b15 = 1;
216 if ((regval & LPC32XX_CLKPWR_HCLKPLL_POSTDIV_BYPASS) != 0)
217 pllcfg.direct_output_b14 = 1;
218 if ((regval & LPC32XX_CLKPWR_HCLKPLL_FDBK_SEL_FCLK) != 0)
219 pllcfg.fdbk_div_ctrl_b13 = 1;
220 pllcfg.pll_m = 1 + ((regval >> 1) & 0xFF);
221 pllcfg.pll_n = 1 + ((regval >> 9) & 0x3);
222 pllcfg.pll_p = pll_postdivs[((regval >> 11) & 0x3)];
224 return clk_check_pll_setup(inputclk, &pllcfg);
228 * Setup the HCLK PLL with a PLL structure
230 static u32 local_clk_pll_setup(struct clk_pll_setup *PllSetup)
234 if (PllSetup->analog_on != 0)
235 tmp |= LPC32XX_CLKPWR_HCLKPLL_POWER_UP;
236 if (PllSetup->cco_bypass_b15 != 0)
237 tmp |= LPC32XX_CLKPWR_HCLKPLL_CCO_BYPASS;
238 if (PllSetup->direct_output_b14 != 0)
239 tmp |= LPC32XX_CLKPWR_HCLKPLL_POSTDIV_BYPASS;
240 if (PllSetup->fdbk_div_ctrl_b13 != 0)
241 tmp |= LPC32XX_CLKPWR_HCLKPLL_FDBK_SEL_FCLK;
243 tv = ffs(PllSetup->pll_p) - 1;
244 if ((!is_power_of_2(PllSetup->pll_p)) || (tv > 3))
247 tmp |= LPC32XX_CLKPWR_HCLKPLL_POSTDIV_2POW(tv);
248 tmp |= LPC32XX_CLKPWR_HCLKPLL_PREDIV_PLUS1(PllSetup->pll_n - 1);
249 tmp |= LPC32XX_CLKPWR_HCLKPLL_PLLM(PllSetup->pll_m - 1);
255 * Update the ARM core PLL frequency rate variable from the actual PLL setting
257 static void local_update_armpll_rate(void)
261 clkin = clk_armpll.parent->rate;
262 pllreg = __raw_readl(LPC32XX_CLKPWR_HCLKPLL_CTRL) & 0x1FFFF;
264 clk_armpll.rate = clk_get_pllrate_from_reg(clkin, pllreg);
268 * Find a PLL configuration for the selected input frequency
270 static u32 local_clk_find_pll_cfg(u32 pllin_freq, u32 target_freq,
271 struct clk_pll_setup *pllsetup)
273 u32 ifreq, freqtol, m, n, p, fclkout;
275 /* Determine frequency tolerance limits */
276 freqtol = target_freq / 250;
279 /* Is direct bypass mode possible? */
280 if (abs(pllin_freq - target_freq) <= freqtol) {
281 pllsetup->analog_on = 0;
282 pllsetup->cco_bypass_b15 = 1;
283 pllsetup->direct_output_b14 = 1;
284 pllsetup->fdbk_div_ctrl_b13 = 1;
285 pllsetup->pll_p = pll_postdivs[0];
288 return clk_check_pll_setup(ifreq, pllsetup);
289 } else if (target_freq <= ifreq) {
290 pllsetup->analog_on = 0;
291 pllsetup->cco_bypass_b15 = 1;
292 pllsetup->direct_output_b14 = 0;
293 pllsetup->fdbk_div_ctrl_b13 = 1;
296 for (p = 0; p <= 3; p++) {
297 pllsetup->pll_p = pll_postdivs[p];
298 fclkout = clk_check_pll_setup(ifreq, pllsetup);
299 if (abs(target_freq - fclkout) <= freqtol)
304 /* Is direct mode possible? */
305 pllsetup->analog_on = 1;
306 pllsetup->cco_bypass_b15 = 0;
307 pllsetup->direct_output_b14 = 1;
308 pllsetup->fdbk_div_ctrl_b13 = 0;
309 pllsetup->pll_p = pll_postdivs[0];
310 for (m = 1; m <= 256; m++) {
311 for (n = 1; n <= 4; n++) {
312 /* Compute output frequency for this value */
315 fclkout = clk_check_pll_setup(ifreq,
317 if (abs(target_freq - fclkout) <=
323 /* Is integer mode possible? */
324 pllsetup->analog_on = 1;
325 pllsetup->cco_bypass_b15 = 0;
326 pllsetup->direct_output_b14 = 0;
327 pllsetup->fdbk_div_ctrl_b13 = 1;
328 for (m = 1; m <= 256; m++) {
329 for (n = 1; n <= 4; n++) {
330 for (p = 0; p < 4; p++) {
331 /* Compute output frequency */
332 pllsetup->pll_p = pll_postdivs[p];
335 fclkout = clk_check_pll_setup(
337 if (abs(target_freq - fclkout) <= freqtol)
343 /* Try non-integer mode */
344 pllsetup->analog_on = 1;
345 pllsetup->cco_bypass_b15 = 0;
346 pllsetup->direct_output_b14 = 0;
347 pllsetup->fdbk_div_ctrl_b13 = 0;
348 for (m = 1; m <= 256; m++) {
349 for (n = 1; n <= 4; n++) {
350 for (p = 0; p < 4; p++) {
351 /* Compute output frequency */
352 pllsetup->pll_p = pll_postdivs[p];
355 fclkout = clk_check_pll_setup(
357 if (abs(target_freq - fclkout) <= freqtol)
366 static struct clk clk_armpll = {
368 .get_rate = local_return_parent_rate,
372 * Setup the USB PLL with a PLL structure
374 static u32 local_clk_usbpll_setup(struct clk_pll_setup *pHCLKPllSetup)
376 u32 reg, tmp = local_clk_pll_setup(pHCLKPllSetup);
378 reg = __raw_readl(LPC32XX_CLKPWR_USB_CTRL) & ~0x1FFFF;
380 __raw_writel(reg, LPC32XX_CLKPWR_USB_CTRL);
382 return clk_check_pll_setup(clk_usbpll.parent->rate,
386 static int local_usbpll_enable(struct clk *clk, int enable)
390 unsigned long timeout = jiffies + msecs_to_jiffies(20);
392 reg = __raw_readl(LPC32XX_CLKPWR_USB_CTRL);
394 __raw_writel(reg & ~(LPC32XX_CLKPWR_USBCTRL_CLK_EN2 |
395 LPC32XX_CLKPWR_USBCTRL_PLL_PWRUP),
396 LPC32XX_CLKPWR_USB_CTRL);
397 __raw_writel(reg & ~LPC32XX_CLKPWR_USBCTRL_CLK_EN1,
398 LPC32XX_CLKPWR_USB_CTRL);
400 if (enable && usb_pll_valid && usb_pll_enable) {
403 * If the PLL rate has been previously set, then the rate
404 * in the PLL register is valid and can be enabled here.
405 * Otherwise, it needs to be enabled as part of setrate.
409 * Gate clock into PLL
411 reg |= LPC32XX_CLKPWR_USBCTRL_CLK_EN1;
412 __raw_writel(reg, LPC32XX_CLKPWR_USB_CTRL);
417 reg |= LPC32XX_CLKPWR_USBCTRL_PLL_PWRUP;
418 __raw_writel(reg, LPC32XX_CLKPWR_USB_CTRL);
421 * Wait for PLL to lock
423 while ((timeout > jiffies) && (ret == -ENODEV)) {
424 reg = __raw_readl(LPC32XX_CLKPWR_USB_CTRL);
425 if (reg & LPC32XX_CLKPWR_USBCTRL_PLL_STS)
432 * Gate clock from PLL if PLL is locked
435 __raw_writel(reg | LPC32XX_CLKPWR_USBCTRL_CLK_EN2,
436 LPC32XX_CLKPWR_USB_CTRL);
439 __raw_writel(reg & ~(LPC32XX_CLKPWR_USBCTRL_CLK_EN1 |
440 LPC32XX_CLKPWR_USBCTRL_PLL_PWRUP),
441 LPC32XX_CLKPWR_USB_CTRL);
443 } else if ((enable == 0) && usb_pll_valid && usb_pll_enable) {
451 static unsigned long local_usbpll_round_rate(struct clk *clk,
455 struct clk_pll_setup pllsetup;
458 * Unlike other clocks, this clock has a KHz input rate, so bump
459 * it up to work with the PLL function
463 clkin = clk->get_rate(clk);
464 usbdiv = (__raw_readl(LPC32XX_CLKPWR_USBCLK_PDIV) &
465 LPC32XX_CLKPWR_USBPDIV_PLL_MASK) + 1;
466 clkin = clkin / usbdiv;
468 /* Try to find a good rate setup */
469 if (local_clk_find_pll_cfg(clkin, rate, &pllsetup) == 0)
472 return clk_check_pll_setup(clkin, &pllsetup);
475 static int local_usbpll_set_rate(struct clk *clk, unsigned long rate)
479 struct clk_pll_setup pllsetup;
482 * Unlike other clocks, this clock has a KHz input rate, so bump
483 * it up to work with the PLL function
487 clkin = clk->get_rate(clk->parent);
488 usbdiv = (__raw_readl(LPC32XX_CLKPWR_USBCLK_PDIV) &
489 LPC32XX_CLKPWR_USBPDIV_PLL_MASK) + 1;
490 clkin = clkin / usbdiv;
492 /* Try to find a good rate setup */
493 if (local_clk_find_pll_cfg(clkin, rate, &pllsetup) == 0)
497 * Disable PLL clocks during PLL change
499 local_usbpll_enable(clk, 0);
500 pllsetup.analog_on = 0;
501 local_clk_usbpll_setup(&pllsetup);
504 * Start USB PLL and check PLL status
510 ret = local_usbpll_enable(clk, 1);
512 clk->rate = clk_check_pll_setup(clkin, &pllsetup);
517 static struct clk clk_usbpll = {
519 .set_rate = local_usbpll_set_rate,
520 .enable = local_usbpll_enable,
521 .rate = 48000, /* In KHz */
522 .get_rate = local_return_parent_rate,
523 .round_rate = local_usbpll_round_rate,
526 static u32 clk_get_hclk_div(void)
528 static const u32 hclkdivs[4] = {1, 2, 4, 4};
529 return hclkdivs[LPC32XX_CLKPWR_HCLKDIV_DIV_2POW(
530 __raw_readl(LPC32XX_CLKPWR_HCLK_DIV))];
533 static struct clk clk_hclk = {
534 .parent = &clk_armpll,
535 .get_rate = local_return_parent_rate,
538 static struct clk clk_pclk = {
539 .parent = &clk_armpll,
540 .get_rate = local_return_parent_rate,
543 static int local_onoff_enable(struct clk *clk, int enable)
547 tmp = __raw_readl(clk->enable_reg);
550 tmp &= ~clk->enable_mask;
552 tmp |= clk->enable_mask;
554 __raw_writel(tmp, clk->enable_reg);
559 /* Peripheral clock sources */
560 static struct clk clk_timer0 = {
562 .enable = local_onoff_enable,
563 .enable_reg = LPC32XX_CLKPWR_TIMERS_PWMS_CLK_CTRL_1,
564 .enable_mask = LPC32XX_CLKPWR_TMRPWMCLK_TIMER0_EN,
565 .get_rate = local_return_parent_rate,
567 static struct clk clk_timer1 = {
569 .enable = local_onoff_enable,
570 .enable_reg = LPC32XX_CLKPWR_TIMERS_PWMS_CLK_CTRL_1,
571 .enable_mask = LPC32XX_CLKPWR_TMRPWMCLK_TIMER1_EN,
572 .get_rate = local_return_parent_rate,
574 static struct clk clk_timer2 = {
576 .enable = local_onoff_enable,
577 .enable_reg = LPC32XX_CLKPWR_TIMERS_PWMS_CLK_CTRL_1,
578 .enable_mask = LPC32XX_CLKPWR_TMRPWMCLK_TIMER2_EN,
579 .get_rate = local_return_parent_rate,
581 static struct clk clk_timer3 = {
583 .enable = local_onoff_enable,
584 .enable_reg = LPC32XX_CLKPWR_TIMERS_PWMS_CLK_CTRL_1,
585 .enable_mask = LPC32XX_CLKPWR_TMRPWMCLK_TIMER3_EN,
586 .get_rate = local_return_parent_rate,
588 static struct clk clk_wdt = {
590 .enable = local_onoff_enable,
591 .enable_reg = LPC32XX_CLKPWR_TIMER_CLK_CTRL,
592 .enable_mask = LPC32XX_CLKPWR_PWMCLK_WDOG_EN,
593 .get_rate = local_return_parent_rate,
595 static struct clk clk_vfp9 = {
597 .enable = local_onoff_enable,
598 .enable_reg = LPC32XX_CLKPWR_DEBUG_CTRL,
599 .enable_mask = LPC32XX_CLKPWR_VFP_CLOCK_ENABLE_BIT,
600 .get_rate = local_return_parent_rate,
602 static struct clk clk_dma = {
604 .enable = local_onoff_enable,
605 .enable_reg = LPC32XX_CLKPWR_DMA_CLK_CTRL,
606 .enable_mask = LPC32XX_CLKPWR_DMACLKCTRL_CLK_EN,
607 .get_rate = local_return_parent_rate,
610 static struct clk clk_uart3 = {
612 .enable = local_onoff_enable,
613 .enable_reg = LPC32XX_CLKPWR_UART_CLK_CTRL,
614 .enable_mask = LPC32XX_CLKPWR_UARTCLKCTRL_UART3_EN,
615 .get_rate = local_return_parent_rate,
618 static struct clk clk_uart4 = {
620 .enable = local_onoff_enable,
621 .enable_reg = LPC32XX_CLKPWR_UART_CLK_CTRL,
622 .enable_mask = LPC32XX_CLKPWR_UARTCLKCTRL_UART4_EN,
623 .get_rate = local_return_parent_rate,
626 static struct clk clk_uart5 = {
628 .enable = local_onoff_enable,
629 .enable_reg = LPC32XX_CLKPWR_UART_CLK_CTRL,
630 .enable_mask = LPC32XX_CLKPWR_UARTCLKCTRL_UART5_EN,
631 .get_rate = local_return_parent_rate,
634 static struct clk clk_uart6 = {
636 .enable = local_onoff_enable,
637 .enable_reg = LPC32XX_CLKPWR_UART_CLK_CTRL,
638 .enable_mask = LPC32XX_CLKPWR_UARTCLKCTRL_UART6_EN,
639 .get_rate = local_return_parent_rate,
642 static struct clk clk_i2c0 = {
644 .enable = local_onoff_enable,
645 .enable_reg = LPC32XX_CLKPWR_I2C_CLK_CTRL,
646 .enable_mask = LPC32XX_CLKPWR_I2CCLK_I2C1CLK_EN,
647 .get_rate = local_return_parent_rate,
650 static struct clk clk_i2c1 = {
652 .enable = local_onoff_enable,
653 .enable_reg = LPC32XX_CLKPWR_I2C_CLK_CTRL,
654 .enable_mask = LPC32XX_CLKPWR_I2CCLK_I2C2CLK_EN,
655 .get_rate = local_return_parent_rate,
658 static struct clk clk_i2c2 = {
660 .enable = local_onoff_enable,
661 .enable_reg = io_p2v(LPC32XX_USB_BASE + 0xFF4),
663 .get_rate = local_return_parent_rate,
666 static struct clk clk_ssp0 = {
668 .enable = local_onoff_enable,
669 .enable_reg = LPC32XX_CLKPWR_SSP_CLK_CTRL,
670 .enable_mask = LPC32XX_CLKPWR_SSPCTRL_SSPCLK0_EN,
671 .get_rate = local_return_parent_rate,
674 static struct clk clk_ssp1 = {
676 .enable = local_onoff_enable,
677 .enable_reg = LPC32XX_CLKPWR_SSP_CLK_CTRL,
678 .enable_mask = LPC32XX_CLKPWR_SSPCTRL_SSPCLK1_EN,
679 .get_rate = local_return_parent_rate,
682 static struct clk clk_kscan = {
683 .parent = &osc_32KHz,
684 .enable = local_onoff_enable,
685 .enable_reg = LPC32XX_CLKPWR_KEY_CLK_CTRL,
686 .enable_mask = LPC32XX_CLKPWR_KEYCLKCTRL_CLK_EN,
687 .get_rate = local_return_parent_rate,
690 static struct clk clk_nand = {
692 .enable = local_onoff_enable,
693 .enable_reg = LPC32XX_CLKPWR_NAND_CLK_CTRL,
694 .enable_mask = LPC32XX_CLKPWR_NANDCLK_SLCCLK_EN,
695 .get_rate = local_return_parent_rate,
698 static struct clk clk_i2s0 = {
700 .enable = local_onoff_enable,
701 .enable_reg = LPC32XX_CLKPWR_I2S_CLK_CTRL,
702 .enable_mask = LPC32XX_CLKPWR_I2SCTRL_I2SCLK0_EN,
703 .get_rate = local_return_parent_rate,
706 static struct clk clk_i2s1 = {
708 .enable = local_onoff_enable,
709 .enable_reg = LPC32XX_CLKPWR_I2S_CLK_CTRL,
710 .enable_mask = LPC32XX_CLKPWR_I2SCTRL_I2SCLK1_EN,
711 .get_rate = local_return_parent_rate,
714 static struct clk clk_net = {
716 .enable = local_onoff_enable,
717 .enable_reg = LPC32XX_CLKPWR_MACCLK_CTRL,
718 .enable_mask = (LPC32XX_CLKPWR_MACCTRL_DMACLK_EN |
719 LPC32XX_CLKPWR_MACCTRL_MMIOCLK_EN |
720 LPC32XX_CLKPWR_MACCTRL_HRCCLK_EN),
721 .get_rate = local_return_parent_rate,
724 static struct clk clk_rtc = {
725 .parent = &osc_32KHz,
726 .rate = 1, /* 1 Hz */
727 .get_rate = local_return_parent_rate,
730 static struct clk clk_usbd = {
731 .parent = &clk_usbpll,
732 .enable = local_onoff_enable,
733 .enable_reg = LPC32XX_CLKPWR_USB_CTRL,
734 .enable_mask = LPC32XX_CLKPWR_USBCTRL_HCLK_EN,
735 .get_rate = local_return_parent_rate,
738 static int tsc_onoff_enable(struct clk *clk, int enable)
742 /* Make sure 32KHz clock is the selected clock */
743 tmp = __raw_readl(LPC32XX_CLKPWR_ADC_CLK_CTRL_1);
744 tmp &= ~LPC32XX_CLKPWR_ADCCTRL1_PCLK_SEL;
745 __raw_writel(tmp, LPC32XX_CLKPWR_ADC_CLK_CTRL_1);
748 __raw_writel(0, clk->enable_reg);
750 __raw_writel(clk->enable_mask, clk->enable_reg);
755 static struct clk clk_tsc = {
756 .parent = &osc_32KHz,
757 .enable = tsc_onoff_enable,
758 .enable_reg = LPC32XX_CLKPWR_ADC_CLK_CTRL,
759 .enable_mask = LPC32XX_CLKPWR_ADC32CLKCTRL_CLK_EN,
760 .get_rate = local_return_parent_rate,
763 static int mmc_onoff_enable(struct clk *clk, int enable)
767 tmp = __raw_readl(LPC32XX_CLKPWR_MS_CTRL) &
768 ~LPC32XX_CLKPWR_MSCARD_SDCARD_EN;
770 /* If rate is 0, disable clock */
772 tmp |= LPC32XX_CLKPWR_MSCARD_SDCARD_EN;
774 /* Start clock at highest rate */
775 if (!(tmp & LPC32XX_CLKPWR_MSCARD_SDCARD_DIV(0xF)))
776 tmp |= LPC32XX_CLKPWR_MSCARD_SDCARD_DIV(1);
778 __raw_writel(tmp, LPC32XX_CLKPWR_MS_CTRL);
783 static unsigned long mmc_get_rate(struct clk *clk)
787 div = __raw_readl(LPC32XX_CLKPWR_MS_CTRL);
789 /* Get the parent clock rate */
790 rate = clk->parent->get_rate(clk->parent);
792 /* Get the MMC controller clock divider value */
793 div = div & LPC32XX_CLKPWR_MSCARD_SDCARD_DIV(0xf);
801 static unsigned long mmc_round_rate(struct clk *clk, unsigned long rate)
803 unsigned long div, prate;
805 /* Get the parent clock rate */
806 prate = clk->parent->get_rate(clk->parent);
816 * The divider is forced to 1 to keep the SD clock granularity
817 * good. Using a non-0 divider will limit the SD card clock rates
818 * the SD driver can generate. Remove it if your feeling crazy.
825 static int mmc_set_rate(struct clk *clk, unsigned long rate)
828 unsigned long prate, div, crate = mmc_round_rate(clk, rate);
830 prate = clk->parent->get_rate(clk->parent);
834 /* The MMC clock must be on when accessing an MMC register */
835 tmp = __raw_readl(LPC32XX_CLKPWR_MS_CTRL) &
836 ~LPC32XX_CLKPWR_MSCARD_SDCARD_DIV(0xf);
837 tmp |= LPC32XX_CLKPWR_MSCARD_SDCARD_DIV(div);
838 __raw_writel(tmp, LPC32XX_CLKPWR_MS_CTRL);
844 * This is the MMC IP clock, not the MMC CLK signal rate!
846 static struct clk clk_mmc = {
847 .parent = &clk_armpll,
848 .set_rate = mmc_set_rate,
849 .get_rate = mmc_get_rate,
850 .round_rate = mmc_round_rate,
851 .enable = mmc_onoff_enable,
852 .enable_reg = LPC32XX_CLKPWR_MS_CTRL,
853 .enable_mask = LPC32XX_CLKPWR_MSCARD_SDCARD_EN,
856 static unsigned long clcd_get_rate(struct clk *clk)
858 u32 tmp, div, rate, oldclk;
860 /* The LCD clock must be on when accessing an LCD register */
861 oldclk = __raw_readl(LPC32XX_CLKPWR_LCDCLK_CTRL);
862 __raw_writel(oldclk | LPC32XX_CLKPWR_LCDCTRL_CLK_EN,
863 LPC32XX_CLKPWR_LCDCLK_CTRL);
864 tmp = __raw_readl(io_p2v(LPC32XX_LCD_BASE + CLCD_TIM2));
865 __raw_writel(oldclk, LPC32XX_CLKPWR_LCDCLK_CTRL);
867 rate = clk->parent->get_rate(clk->parent);
869 /* Only supports internal clocking */
873 div = (tmp & 0x1F) | ((tmp & 0xF8) >> 22);
874 tmp = rate / (2 + div);
879 static int clcd_set_rate(struct clk *clk, unsigned long rate)
881 u32 tmp, prate, div, oldclk;
883 /* The LCD clock must be on when accessing an LCD register */
884 oldclk = __raw_readl(LPC32XX_CLKPWR_LCDCLK_CTRL);
885 __raw_writel(oldclk | LPC32XX_CLKPWR_LCDCTRL_CLK_EN,
886 LPC32XX_CLKPWR_LCDCLK_CTRL);
888 tmp = __raw_readl(io_p2v(LPC32XX_LCD_BASE + CLCD_TIM2)) | TIM2_BCD;
889 prate = clk->parent->get_rate(clk->parent);
892 /* Find closest divider */
899 tmp &= ~(0xF800001F);
901 tmp |= (((div >> 5) & 0x1F) << 27);
904 __raw_writel(tmp, io_p2v(LPC32XX_LCD_BASE + CLCD_TIM2));
905 __raw_writel(oldclk, LPC32XX_CLKPWR_LCDCLK_CTRL);
910 static unsigned long clcd_round_rate(struct clk *clk, unsigned long rate)
914 prate = clk->parent->get_rate(clk->parent);
929 static struct clk clk_lcd = {
931 .set_rate = clcd_set_rate,
932 .get_rate = clcd_get_rate,
933 .round_rate = clcd_round_rate,
934 .enable = local_onoff_enable,
935 .enable_reg = LPC32XX_CLKPWR_LCDCLK_CTRL,
936 .enable_mask = LPC32XX_CLKPWR_LCDCTRL_CLK_EN,
939 static inline void clk_lock(void)
941 mutex_lock(&clkm_lock);
944 static inline void clk_unlock(void)
946 mutex_unlock(&clkm_lock);
949 static void local_clk_disable(struct clk *clk)
951 // WARN_ON(clk->usecount == 0);
953 /* Don't attempt to disable clock if it has no users */
954 if (clk->usecount > 0) {
957 /* Only disable clock when it has no more users */
958 if ((clk->usecount == 0) && (clk->enable))
961 /* Check parent clocks, they may need to be disabled too */
963 local_clk_disable(clk->parent);
967 static int local_clk_enable(struct clk *clk)
971 /* Enable parent clocks first and update use counts */
973 ret = local_clk_enable(clk->parent);
976 /* Only enable clock if it's currently disabled */
977 if ((clk->usecount == 0) && (clk->enable))
978 ret = clk->enable(clk, 1);
982 else if (clk->parent)
983 local_clk_disable(clk->parent);
990 * clk_enable - inform the system when the clock source should be running.
992 int clk_enable(struct clk *clk)
997 ret = local_clk_enable(clk);
1002 EXPORT_SYMBOL(clk_enable);
1005 * clk_disable - inform the system when the clock source is no longer required
1007 void clk_disable(struct clk *clk)
1010 local_clk_disable(clk);
1013 EXPORT_SYMBOL(clk_disable);
1016 * clk_get_rate - obtain the current clock rate (in Hz) for a clock source
1018 unsigned long clk_get_rate(struct clk *clk)
1023 rate = clk->get_rate(clk);
1028 EXPORT_SYMBOL(clk_get_rate);
1031 * clk_set_rate - set the clock rate for a clock source
1033 int clk_set_rate(struct clk *clk, unsigned long rate)
1038 * Most system clocks can only be enabled or disabled, with
1039 * the actual rate set as part of the peripheral dividers
1040 * instead of high level clock control
1042 if (clk->set_rate) {
1044 ret = clk->set_rate(clk, rate);
1050 EXPORT_SYMBOL(clk_set_rate);
1053 * clk_round_rate - adjust a rate to the exact rate a clock can provide
1055 long clk_round_rate(struct clk *clk, unsigned long rate)
1059 if (clk->round_rate)
1060 rate = clk->round_rate(clk, rate);
1062 rate = clk->get_rate(clk);
1068 EXPORT_SYMBOL(clk_round_rate);
1071 * clk_set_parent - set the parent clock source for this clock
1073 int clk_set_parent(struct clk *clk, struct clk *parent)
1075 /* Clock re-parenting is not supported */
1078 EXPORT_SYMBOL(clk_set_parent);
1081 * clk_get_parent - get the parent clock source for this clock
1083 struct clk *clk_get_parent(struct clk *clk)
1087 EXPORT_SYMBOL(clk_get_parent);
1089 #define _REGISTER_CLOCK(d, n, c) \
1096 static struct clk_lookup lookups[] = {
1097 _REGISTER_CLOCK(NULL, "osc_32KHz", osc_32KHz)
1098 _REGISTER_CLOCK(NULL, "osc_pll397", osc_pll397)
1099 _REGISTER_CLOCK(NULL, "osc_main", osc_main)
1100 _REGISTER_CLOCK(NULL, "sys_ck", clk_sys)
1101 _REGISTER_CLOCK(NULL, "arm_pll_ck", clk_armpll)
1102 _REGISTER_CLOCK(NULL, "ck_pll5", clk_usbpll)
1103 _REGISTER_CLOCK(NULL, "hclk_ck", clk_hclk)
1104 _REGISTER_CLOCK(NULL, "pclk_ck", clk_pclk)
1105 _REGISTER_CLOCK(NULL, "timer0_ck", clk_timer0)
1106 _REGISTER_CLOCK(NULL, "timer1_ck", clk_timer1)
1107 _REGISTER_CLOCK(NULL, "timer2_ck", clk_timer2)
1108 _REGISTER_CLOCK(NULL, "timer3_ck", clk_timer3)
1109 _REGISTER_CLOCK(NULL, "vfp9_ck", clk_vfp9)
1110 _REGISTER_CLOCK(NULL, "clk_dmac", clk_dma)
1111 _REGISTER_CLOCK("pnx4008-watchdog", NULL, clk_wdt)
1112 _REGISTER_CLOCK(NULL, "uart3_ck", clk_uart3)
1113 _REGISTER_CLOCK(NULL, "uart4_ck", clk_uart4)
1114 _REGISTER_CLOCK(NULL, "uart5_ck", clk_uart5)
1115 _REGISTER_CLOCK(NULL, "uart6_ck", clk_uart6)
1116 _REGISTER_CLOCK("pnx-i2c.0", NULL, clk_i2c0)
1117 _REGISTER_CLOCK("pnx-i2c.1", NULL, clk_i2c1)
1118 _REGISTER_CLOCK("pnx-i2c.2", NULL, clk_i2c2)
1119 _REGISTER_CLOCK("dev:ssp0", NULL, clk_ssp0)
1120 _REGISTER_CLOCK("dev:ssp1", NULL, clk_ssp1)
1121 _REGISTER_CLOCK("lpc32xx_keys.0", NULL, clk_kscan)
1122 _REGISTER_CLOCK("lpc32xx-nand.0", "nand_ck", clk_nand)
1123 _REGISTER_CLOCK(NULL, "i2s0_ck", clk_i2s0)
1124 _REGISTER_CLOCK(NULL, "i2s1_ck", clk_i2s1)
1125 _REGISTER_CLOCK("lpc32xx-ts", NULL, clk_tsc)
1126 _REGISTER_CLOCK("dev:mmc0", NULL, clk_mmc)
1127 _REGISTER_CLOCK("lpc-net.0", NULL, clk_net)
1128 _REGISTER_CLOCK("dev:clcd", NULL, clk_lcd)
1129 _REGISTER_CLOCK("lpc32xx_udc", "ck_usbd", clk_usbd)
1130 _REGISTER_CLOCK("lpc32xx_rtc", NULL, clk_rtc)
1133 static int __init clk_init(void)
1137 for (i = 0; i < ARRAY_SIZE(lookups); i++)
1138 clkdev_add(&lookups[i]);
1141 * Setup muxed SYSCLK for HCLK PLL base -this selects the
1142 * parent clock used for the ARM PLL and is used to derive
1143 * the many system clock rates in the device.
1145 if (clk_is_sysclk_mainosc() != 0)
1146 clk_sys.parent = &osc_main;
1148 clk_sys.parent = &osc_pll397;
1150 clk_sys.rate = clk_sys.parent->rate;
1152 /* Compute the current ARM PLL and USB PLL frequencies */
1153 local_update_armpll_rate();
1155 /* Compute HCLK and PCLK bus rates */
1156 clk_hclk.rate = clk_hclk.parent->rate / clk_get_hclk_div();
1157 clk_pclk.rate = clk_pclk.parent->rate / clk_get_pclk_div();
1160 * Enable system clocks - this step is somewhat formal, as the
1161 * clocks are already running, but it does get the clock data
1162 * inline with the actual system state. Never disable these
1163 * clocks as they will only stop if the system is going to sleep.
1164 * In that case, the chip/system power management functions will
1165 * handle clock gating.
1167 if (clk_enable(&clk_hclk) || clk_enable(&clk_pclk))
1168 printk(KERN_ERR "Error enabling system HCLK and PCLK\n");
1171 * Timers 0 and 1 were enabled and are being used by the high
1172 * resolution tick function prior to this driver being initialized.
1173 * Tag them now as used.
1175 if (clk_enable(&clk_timer0) || clk_enable(&clk_timer1))
1176 printk(KERN_ERR "Error enabling timer tick clocks\n");
1180 core_initcall(clk_init);